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• Exascale computing systems are expected to have processor cores and 
other components in the numbers of millions.  

– components with expected life-span of ten years 

• ~100k hours/component = 10 failures among 1M components  

– codes that run for a few hours likely experience failures of several 
components. 

Inherent Failures in Exascale Computing Systems 

• Failure rates limit the effectiveness of current 
check-pointing:  

– run-times could be of the order of 
several hours for exascale systems 

– transient silent errors may lead to 
erroneous computations 

• Failures will be integral part of exascale 
computations – must be explicitly accounted 

– code outputs must be quantified with 
confidence estimates  

• specific to system failure profile 

• justifiable by measurements 

1M components 
~10 failures/hour 



• Foundational works: 

–  von Neumann studied (in 1950s) mathematical aspects of achieving 
reliable computations over systems with unreliable components 

– subsequent reliability improvements in computing systems, perhaps, 
led to such studies not being extensively continued 

• Deployed systems: computing systems in satellites 

– deployed over past decades - enhanced with Software-Implemented 
Hardware Fault Tolerance (SIHFT) methods to counteract errors due 
to radiation in space environments.  

But, exacale computations present new challenges 

– sheer size and system complexity makes dynamic profiling of the 
failures and robustness complicated 

– computation becomes inherently probabilistic: 

• for most applications, 100% guarantee of robustness against 
failures in not possible 

• requires confidence measures for code outputs – running to 
completion is not sufficient 

 

 Related Areas 



System Profiling and Application Tracing 

System Diagnosis and Profiling:  
•Executed at the beginning for an initial system profile 

- repeated periodically or triggered by failure events.  
•Typically, all system resources are devoted for initial profiling 
 
•Our method: 

- execute diagnosis modules customized to static and silent failures 
in processing nodes, memory units and interconnects 
- generate robustness estimates from outputs of diagnosis modules. 

 
Application Tracing:  

•diagnosis modules are strategically inserted into application codes  
-during compilation or preprocessing 

• confidence measures are estimated for their outputs.  
 

Basic idea: execution paths of these tracer codes “follow” along the same 
components as the application codes:  

•processing nodes, memory elements and interconnect links,  
 
Very important case: no detected failures lead to higher confidence for 
application codes – detection is only a part of our goal 



Our approach: synthesis of methods from fault diagnosis, chaotic 
Poincare maps, and statistical estimation: 

a) Diagnosis methods: identify computation errors due to 
component failures, in arithmetic and logic unit (ALU), memory 
and cross-connect, by strategically guiding the execution paths: 

i. system diagnosis pipelines 

ii. application traces 

b) Poincare maps amplify effects of component failures making 
them quickly detectable, 

c) Statistical estimation methods process data from execution 
traces to generate 

i. system robustness profiles  

ii. confidence estimates for applications 

 Our Approach 



Framework for System Profiling and Application Tracing 

System profiles can be used to identify computing zones 
Applications can be executed in suitable zones and traced to generate confidence 
estimates 



Chaotic Poincare maps 
 
Poincare Map: 
 
 
Trajectory 
 
 
Examples: 
      logistic map: 
 
 
      tent map: 
 
 
 
       Hennon map 
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Simple computations generate seemingly complex trajectories 
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Chaotic maps amplify state errors 

Chaotic trajectories:                         is chaotic if 
(i) it is not asymptotically periodic, and 
(ii) Lyapunov exponent is positive 

Key Property: Extreme sensitivity to states: small differences in states lead 
to rapidly divergent trajectories 
 

differences between two trajectories 
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Poincare maps for fault detection 
Poincare maps computed in parallel at different nodes: fault at one will 
lead to quick divergence of the outputs, depending on: 
 

•Type of faults: Wide range of faults in  
•arithmetic and logical operations 
•registers and memory 

but are limited to those in operations used by M(.) 
 

•Poincare map properties: Computation of M(.) 
•sensitive to errors  

- in constituent operations, and  
- mechanisms used in storing and updating the states 

•rate of divergence and its detectability depends on the 
Lyapunov exponent  

- generally, larger Lyapunov exponent values lead to 
quicker divergence 
- for tent map,                   except at X=1/2 

 
Side Note: Codes with known outputs are routinely used for diagnosis of 
computing systems – Poincare maps are among the least complex 

 

L ln 2 0M  



Chaotic-Identity Map 

Poincare map amplifies errors in operations used in its own computation  

Chaotic-Identity Map: 

Execution routed through 
•computing operations 
•memory locations 
•interconnect links  

to capture errors in them 
 
Output          is identical to            
if there are no faults 
 
It catches errors in specified 
operations – instructions, sub-
routines, libraries 
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Chaotic-Identity map (CI-map) augments Poincare computation : 
• Operation-Inverse Pairs: each update step with a sequence of pairs 

each consisting of an operation and its inverse. Choice based on 
instruction sets of CPU and GPU, sub-routines, libraries 
• complement operations used by Poincare map operations.  
Application of a pair of operations gives back the original operand  
- error in either would be amplified by subsequent Poincare updates 

 
•State Movement Operations: move state variable 

• among the memory elements and/or 
• across the interconnects, in each step  

      before applying M(.) 
Capture errors in memory and transmission across interconnect 

• memory-to-memory transfers can be achieved by several means:  
-additional variables in “shared” memory, explicit MPI calls 

• application tracing: movements reflect execution paths of the 
application - tracer codes are called from within them. 

Chaotic-Identity Map 



Outputs of CI-maps are used to generate confidence measures for executions, 
particularly if no failures are detected 

          executed at rate 

- once every        seconds 
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Confidence Estimates 



General Confidence Estimate: 

If failures are detected in       fraction of        executions 
 
General confidence estimate: 
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Derivation: By Hoeffding’s Inequality we have 

 
 

 

ˆ
EP

   22

1/
ˆ1 2

P
P

P

N
N

R EP P P
 

   

 
 

2

2 1 1

1/
ˆ 1 2

NP
P

P

N

R EP P P



        

Derivation of Confidence Estimate: Outline 

By Hoeffding’s Inequality we have 
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Generic CI-Map 

Generic CI-map computation 
 

     is computed on computing node 
  
 output         is sent to the computing node  
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PCC-Chains 

Poincare Computing and Communication chain  
utilizes computations n processing nodes 

 
 connected over interconnect such that  
                    is computed on     and  
           sent to       over interconnect link 
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Pipelines of PCC-Chains 

Compose a Pipelined Chains of Chaotic PCC maps (PCC  -map) by using PCC-
chains such that: 

   of k-th chain  

•computed on       at time i + k and  
•sent to      over interconnect link 
•Example: computation sequence at      is: 

Computed in time:                         in parallel 
 
Confidence bound: 
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A pipeline with     chains and node-periodicity     uses 
consecutive block of nodes: 

• chains sweep across all N nodes  
• for full pipeline 
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Confidence Estimates 

k = 10, n = 10; no detected errors 

0.001,0.01,0.1 

With no detected faults, 
higher confidences with:  
(a) deeper pipelines  
(b) more components  
(c) lower precisions 

 
Certain confidence levels can only be achieved with 
“deep enough” pipelines 

0.1  0.01 

0.001  0.001,0.01,0.1 



Simulation Results 

We simulate three types of errors:  
i. ALU errors corrupt state by a multiplier 

• bit flip to 1 in ALU registers 
ii. memory errors clamp state to a fixed value 

• stuck-at fault in RAM 
iii. cross-connect errors modify state by a multiplier. 

• link transmission error 
 
Nodes transition to a faulty mode with probability p, and 
once transitioned 

•errors type (i) and (ii) are permanent, 
•error type (iii) lasts only for a single time step 



Computation of PCC-chain is routed through nodes via interconnect   

Simulation Abstraction 



Case of no faults: 
10-node pipeline of depth k = 10 

• none are detected  
• all chaotic time traces are 
identical across nodes 

Simulation Results: No Faults 

ground truth: no faults 

trajectories 

detector output: none                              
; 



Simulation Results 

Stuck-at faults: 
•full pipeline, spanning all 10 
nodes 
•trajectories disrupted by faulty 
nodes 
 
•detection within one time step 

detector output:   
two detected 

ground truth:   
two stuck-at faults 



Simulation Results 

Pipeline of single chain  
•executed by one node at time  
•chain “sweeps” across nodes in time 

 
Both faults are detected: 

•detection delayed until the chain 
reaches faulty node 

 
The total computational cost: 

•1/10 of the case (b) 
•detection achieved, albeit delayed by 
few time steps detector output:   

two detected 

ground truth:   
two stuck-at faults 



Simulation Results 

Transient fault in interconnect 
payload lasted for one time unit  
 
Full pipeline spanning all nodes will 
detect such failure 
 
Pipeline of two chains with 
periodicity of 5 nodes is able to 
detect 

detector output:   
two detected 

ground truth:   
two transient faults 



Simulation System 

Simulations on 48-core Linux workstation: 2.23GHz AMD Opteron processors 
 
Computation on a single processor core and delay of 10 micro seconds to 
simulate the latency of interconnect. 

• N = 500,000 nodes: runtimes under 2 seconds for 
 - logistic map and a pair of reciprocal operations (5 operations for CI-map).  

 
 
First-order approximation: for CI-map  

•10 operations each with 10 micro seconds execution time, and  
•interconnect with 10 microsecond latency 

pipeline execution time is 11 seconds for N=100,000 
 
All chains of PCC  -map are computed in parallel 

•execution time scales linearly in N  
•under 2 minutes for million computing nodes 
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application          
code 

Replicated Application Execution 

    system profiling 

confidence estimation 

application 
code 

profiling specifies 
replication level 
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application 
operations 

set replication level 

•Our approach “informs” application and quantifies its output 
•Check-pointing can be similarly “informed” – failure rate 
estimates specify check-pointing frequency 

profiling customized to 
application 

application 
with traces 

computing 
system 

output of traces used 
for confidence 
estimation 



Conclusions 

Our approach  
(i) utilizes light-weight computations based on chaotic and identity maps to 

detect certain classes of errors in computations, and  
(ii) estimates system robustness and confidences of computations 
We illustrated the concepts using simulation examples.  
 
This approach is suitable for exascale systems: 

(a) low computational requirements  
(b) linear scaling of the execution time 

both for system profiling and application tracing 

 
Future Work: 

•These results are only a very first step 
•More analysis and simulations needed 

- understand and quantify classes of errors detected by a given set of 
Poincare and identity maps 

•Statistical estimates are only first-order approximations: 
- further research required to handle correlated failures. 

 



Thank you 


